On the Local Equilibrium Condition
نویسنده
چکیده
A physical system should be in a local equilibrium if it cannot be distinguished from a global equilibrium by “infinitesimally localized measurements”. This seems to be a natural characterization of local equilibrium, however the problem is to give a precise meaning to the qualitative phrase “infinitesimally localized measurements”. A solution is suggested in form of a Local Equilibrium Condition (LEC) which can be applied to non-interacting scalar quanta. The Unruh temperature of massless quanta is derived by applying LEC to an arbitrary point inside the Rindler Wedge. Massless quanta outside a hot sphere are analyzed. A stationary spherically symmetric local equilibrium does only exist according to LEC if the temperature is globally constant. Using LEC a non-trivial stationary local equilibrium is found for rotating massless quanta between two concentric cylinders of different temperatures. This shows that quanta may behave like a fluid with a Bénard instability.
منابع مشابه
Nonlinear Buckling of Circular Nano Plates on Elastic Foundation
The following article investigates nonlinear symmetric buckling of moderately thick circular Nano plates with an orthotropic property under uniform radial compressive in-plane mechanical load. Taking into account Eringen nonlocal elasticity theory, principle of virtual work, first order shear deformation plate theory (FSDT) and nonlinear Von-Karman strains, the governing equations are obtained ...
متن کاملLocal Imperfection Effects on Thermal Buckling Behavior of Composite Fiber Reinforced Truncated Conical Liner
Thermal buckling behavior of truncated conical liner reinforced by laminated composite is investigated in the presence of a general initial imperfection. For this purpose, the method of virtual work and first-order strain-deformation shell theory are employed to extract equilibrium equations. To this end, a finite element code is developed using the 3D 8-node shell element with six degrees of f...
متن کاملInfluence of awareness programs by media in the typhoid fever: a study based on mathematical modeling
In this paper, we propose and analyze a mathematical model describing the effect of awareness programs by public media on the prevalence of Typhoid fever. A threshold quantity $R_{0}$, similar to the basic reproduction number is derived. We investigate the biologically meaningful equilibrium points and their local stability analysis. The global stability analysis has been performed with respect...
متن کاملOptimally Local Dense Conditions for the Existence of Solutions for Vector Equilibrium Problems
In this paper, by using C-sequentially sign property for bifunctions, we provide sufficient conditions that ensure the existence of solutions of some vector equilibrium problems in Hausdorff topological vector spaces which ordered by a cone. The conditions which we consider are not imposed on the whole domain of the operators involved, but just on a locally segment-dense subset of the domain.
متن کاملFractional dynamical systems: A fresh view on the local qualitative theorems
The aim of this work is to describe the qualitative behavior of the solution set of a given system of fractional differential equations and limiting behavior of the dynamical system or flow defined by the system of fractional differential equations. In order to achieve this goal, it is first necessary to develop the local theory for fractional nonlinear systems. This is done by the extension of...
متن کاملEquilibrium condition nonlinear modeling of a cracked concrete beam using a 2D Galerkin finite volume solver
A constitutive model based on two–dimensional unstructured Galerkin finite volume method (GFVM) is introduced and applied for analyzing nonlinear behavior of cracked concrete structures in equilibrium condition. The developed iterative solver treats concrete as an orthotropic nonlinear material and considers the softening and hardening behavior of concrete under compression and tension by using...
متن کامل